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Abstract. T h i s  report summarizes the research performed a t  Rice University 

d u r i n g  the period 1984-86 under NASA Grant No. NAG-1-516 on optimal f l i g h t  

t ra jec tor ies  i n  the presence of windshear. With particular reference to  the 

take-off problem, the topics covered include: equations of motion, problem 

formulation, algori thms, optimal f l i g h t  t ra jector ies ,  advanced guidance schemes, 

simplified guidance schemes, and p i l o t i n g  strategies.  

Key Words. Flight mechanics, take-off, optimal t ra jec tor ies ,  optimal control,  

feedback control, windshear problems, sequential gradient-restoration algorithm, 

dual sequential gradient-restoration algorithm, guidance s t ra tegies ,  acceleration 

guidance, g a m  guidance, theta guidance, piloting s t ra tegies .  
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1. Introduction 

The objective of  this s tudy i s  the determination of optimal f l i g h t  

t ra jec tor ies  i n  the presence of windshear and the development of guidance 

schemes fo r  near-optimum f l i g h t  i n  a windshear. 

by sharp change i n  intensity and direction over a re la t ively small region of  

space. 

airplanes and mili tary airplanes and i s  key t o  a i r c r a f t  safety. 

T h i s  i s  a wind characterized 

T h i s  problem is important i n  the take-off and landing of both c iv i l ian  
I 

The research done under NASA Grant No. NAG-1-516 d u r i n g  the period 1984-86 

is reviewed i n  Section 2. 

the topics covered include: equations of motion, problem formulation, algorithms, 

optimal f l i g h t  t ra jector ies ,  advanced guidance schemes, simplified guidance 

schemes, and piloting strategies. 

With  particular reference t o  the take-off problem, 

The  publications completed or i n  progress a r e  l isted i n  Section 3. The 

abstracts o f  the publications completed are given i n  Section 4. 

bibliography is presented i n  Section 5. 

Finally, a 
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2. Research Review 

2.1. Background. During the month of November 1983, Captain GJ. W. Melvin, 

Del ta A i r l i n e s  and ALPA, approached D r .  A.  Miele, Professor o f  Astronautics 

and Mathematical Sciences a t  Rice University, asking him t o  become in te res ted  

i n  the windshear problem. I n  a meeting which took place on the campus o f  Rice 

Universi ty,  Captain Melvin stated h i s  fee l i ng  t h a t  considerable research had 

been done on the meteorological, aerodynamic, instrumentation, and s t a b i l i t y  

aspects o f  the windshear problem; however, r e l a t i v e l y  l i t t l e  had been done on 

the f l i g h t  mechanics aspects; he f e l t  t ha t  a fundamental study was needed i n  

order t o  b e t t e r  understand the dynamic behavior o f  an a i r c r a f t  i n  a windshear. 

I n  the ensuing discussion, Dr. Miele stated h i s  f e e l i n g  t h a t  the determination 

o f  good s t ra teg ies f o r  coping wi th  windshear s i t u a t i o n s  was e s s e n t i a l l y  an 

optimal con t ro l  problem; t h a t  the methods o f  optimal con t ro l  theory were needed; 

and that, on l y  a f t e r  having found optimal con t ro l  solut ions,  one could proper ly  

address the guidance problem. 

As a r e s u l t  o f  t h i s  meeting, Dr .  Miele prepared a research proposal 

on the opt imizat ion and guidance o f  f l i g h t  t r a j e c t o r i e s  i n  a windshear. The 

proposal was funded i n  August 1984 by NASA-Langley Research Center, w i t h  

Dr. Miele ac t i ng  as P r inc ipa l  Invest igator  and Captain Melvin ac t i ng  as 

Consultant. D r .  R. L. Bowles o f  NASA-LRC i s  P ro jec t  Monitor. Addi t ional  

funds were subsequently obtained through the sponsorship o f  Boeing Comerc ia l  

A i r c r a f t  Company (BCAC) and A i r  L ine P i l o t s  Associat ion (ALPA). 

During the past two years, the Aero-Astronautics Group o f  Rice Universi ty,  

under the d i r e c t i o n  o f  Dr .  Miele, has done research on both the op t im iza t i on  

and the guidance of f l i g h t  t r a j e c t o r i e s  i n  a windshear. 

the Aero-Astronautics Group studied the opt imizat ion aspects of f l i g h t  

t r a j e c t o r i e s  (Refs. 1-7 and 14); i n  the second year ,  the Rero-Astronautics 

I n  the f i r s t  year, 
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Group studied the guidance aspects (Refs, 8-13 and 15-19). 

are summari zed bel ow. 

The main resul ts  

2.2. Equations of Motion. In Ref. 1 ,  the equations of motion under 

1 
windshear conditions are derived employing three different  coordinate systems: 

the Earth-fixed system; the relat ive wind-axes system; and the absolute 

wind-axes system. The following assumptions are  employed: the a i r c r a f t  i s  a 

par t ic le  of constant mass; f l i g h t  takes place i n  a vertical  plane; Newton's 

law i s  valid in an Earth-fixed system; and the wind flow f i e ld  is  steady. 

For the optimization of f l i g h t  t ra jector ies ,  any of the previous 

coordinate systems can be used. However, the re la t ive  wind-axes system i s  t o  

be preferred, because the windshear terms appear explicity i n  the dynamical 

equations. 

physical understanding and interpretation of windshear phenomena. 

Therefore, use of the relative wind-axes system allows an easier 

2.3. Problem Formulation. In Ref. 2, we employ the equations of 

motion written fo r  the re la t ive  wind-axes system. First, we supply an analytical 

description of the forces acting on the aircraf t .  Next, we supply a description 

of the wind flow f ie ld .  

however, useful one-dimensional-models can be developed i f  one refers  t o  the 

near-the-ground behavior of a microburst. 

Generally speaking, the wind flow f i e ld  i s  two-dimensionai; 

W i t h  reference t o  take-off, we assume t h a t  the power set t ing i s  held a t  

the maximum value. Indeed, i t  i s  logical t o  t h i n k  tha t ,  i f  a plane takes off  

under less-than-ideal weather conditions, a prudent p i lo t  employs the maximum 

thrust. 

only control i s  the angle of attack a. 

inequality constraints must be imposed on bo th  c1 and &. 

of  attack a i s  subject t o  the inequality a - < a*, where a, i s  a prescribed upper 

bound. 

W i t h  the power set t ing held a t  the maximum value, i t  i s  c lear  tha t  the 

To obtain r e a l i s t i c  t ra jec tor ies ,  

Specifically,  the angle 

I n  a d d i t i o n ,  i t s  time derivative & i s  subject t o  the double  inequality 
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-C - -  < & < +C,  where C i s  a prescribed constant. 

Concerning the i n i t i a l  conditions, we assume tha t  the i n i t i a l  s t a t e  

i s  given. 

four types of boundary conditions a re  considered. 

Concerning the final conditions, four cases a re  considered; hence, 

( B C O )  The s t a t e  is  f r ee  a t  the final point. 

(BC1) The final value of the pa th  inclination i s  the same as  the 

i n i t i a l  value. 

( B C Z )  The final values of the velocity and the path inclination a re  the 

same as the i n i t i a l  values. 

(BC3) The final values of the velocity, the path inclination, and the 

angle of attack a r e  the same as  the in i t ia l  values. Therefore, this case implies 

that ,  i f  the i n i t i a l  values correspond t o  quasi-steady f l i g h t ,  t h e n  the f ina l  

values a lso correspond to quasi-steady f l ight .  
I I 

I 

Concerning the performance indexes, we consider e i g h t  fundamental 

opt i m i  za ti  on pro b 1 ems. 

( P l ) .  T h i s  i s  a least-square problem involving Ah = h - hR,  the difference 

between the f l i g h t  a l t i t ude  and a reference a l t i t ude ,  assumed t o  be a l inear  

function of the horizontal distance. 

(P2) T h i s  i s  a least-square problem involving Ay = y - yR, the 

difference between the re la t ive  path inclination and a reference value, assumed 

constant. 

(P3) T h i s  i s  a least-square problem involving Aye = ye - yeR, the 

difference between the absolute path inclination and a reference value, assumed 

constant. 

(P4 )  This i s  a minimax problem involving Ah = h - h R ,  the difference 

between the f l i g h t  a1 t i  t ude  and a reference a1 t i t u d e ,  assumed constant. 

(P5)  This i s  a minimax problem involving G A h  = G ( h  - h R ) ,  the weighted 

difference between the f l i g h t  a l t i t ude  and a reference a l t i tude ,  assumed constant, 
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as i n  (P4). Here, G( t )  i s  a prescribed weighting funct ion.  

hR, the 

tude, assumed t o  be 

(P6) This i s  a minimax problem involv ing Ah = 

difference between the f l  i g h t  a1 ti tude and a reference 

a l i n e a r  func t i on  o f  the hor izontal  distance, as i n  (P 

This i s  a minimax problem involv ing Ay = (P7) the d i f f e rence  YR 
between the r e l a t i v e  path i n c l i n a t i o n  and a reference value, assumed constant, 

as i n  (P2). 

(P8). This i s  a minimax problem invo lv ing  Aye = ye - yeR, the 

d i f ference between the  absolute path i n c l i n a t i o n  and a reference value, assumed 

constant, as i n  (P3). 

Probl ems (P1 ) -( P3) a re  1 east-square probl  ems o f  the Bo1 za type. Probl ems 
I 

(P4)-(P8) a re  minimax problems o f  the Chebyshev type, which can be converted 

i n t o  Bolza problems through su i tab le  transformations. 

are p a r t i c u l a r  cases o f  t he  fo l lowing general problem: 

Hence, Problems ( P l  )-(P8) 

(P) Minimize a funct ional  w i t h  respect t o  the s t a t e  vector x ( t ) ,  the 

contro l  vector u( t ) ,  and the parameter vector IT which s a t i s f y  a system of 

d i f f e r e n t i a l  constraints, i n i t i a l  constraints, and f i n a i  const ra in ts .  

2.4. Algorithms. From the previous section, i t  i s  c l e a r  t h a t  one i s  faced 

w i t h  a wide v a r i e t y  o f  problems o f  optimal cont ro l ,  depending on the p a r t i c u l a r  

performance index chosen and the p a r t i c u l a r  type o f  boundary condi t ions chosen. 

These problems are f u r t h e r  complicated by the presence o f  i n e q u a l i t y  const ra in ts  

on the contro l  ( a )  and the t ime der ivat ive o f  the con t ro l  (4). Therefore, a 

powerful a lgor i thm i s  necessary t o  solve the problems under consideration. 

I n  Ref. 3, we present the algori thm useful  f o r  so l v ing  Problem (P) 

on a d i g i t a l  computer, more s p e c i f i c a l l y ,  the sequential gradient - restorat ion 

algor i thm (SGRA). 

presented. 

Both the primal formulation and the dual formulat ion are 

Depending on whether the primal formulation i s  used o r  the dual 

h -  

a1 t 

1- 
Y -  
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formulation i s  used, one obtains a primal sequential gradient-restoration 

algorithm (PSGRA) o r  a dual sequential gradient-restoration algorithm (DSGRA) . 
The systems of Lagrange mu1 t i p l i e r s  associated w i t h  the gradient phase 

of SGRA and the restoration phase of SGRA a r e  examined. 

i t  is shown tha t  the Lagrange multipliers a r e  endowed w i t h  a dual i ty  property: 

they minimize a special functional , quadratic i n  the mu1 t i p l  iers, subject to  

the mu1 t i p l  i e r  different ia l  equations and boundary conditions, f o r  given s t a t e ,  

control , and parameter. These dual i ty properties have considerable computational 

implications: they allow one t o  reduce the auxiliary optimal control problems 

associated w i t h  the gradient phase and the restoration phase of SGRA t o  

mathematical programming problems invo ving a f inite number of parameters as  

unknowns. 

For each phase, 

Numerical experimentation has shown t h a t ,  f o r  nonstiff problems of f l i g h t  

mechanics, DSGRA is  computationally more e f f i c i en t  than PSGRA. 

fo r  the problems under consideration, DSGRA is about 10% more e f f i c i en t  tha t  

PSGRA. Hence, the subsequent numerical experiments a re  based on the use of 

DSGRA. 

In par t icular ,  

2.5. Optimal Trajectories. Optimal t ra jec tor ies  were computed f o r  the 

Boeing B-727 a i r c r a f t ,  u s i n g  the sequential gradient-restoration algorithm and 

the NAS-AS-9000 computer of Rice University. Among the performance indexes 

( P l ) - ( P 8 ) ,  the most re l iab le  one was found to  be (P8), based on the deviation 

of the absolute path inclination from a reference value. After computing several 

hundred optimal t ra jec tor ies ,  certain general conclusions became apparent (see 

Refs. 1-7 and 14) :  

( i )  the optimal t ra jector ies  achieve minimum velocity near the time 

when the shear ends; 
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( i i )  the optimal t ra jector ies  require an i n i t i a l  decrease i n  the angle 

of attack, followed by a gradual increase; the maximum permissible angle of 

attack OL* (stick-shaker angle of a t tack)  is achieved near the time when the shear 

ends; 

( i i i )  for  weak-to-moderate windshears,the optimal t ra jec tor ies  a re  

characterized by a monotonic climb; the average value of the path inclination 

decreases a s  the intensity o f  the shear increases; 

( i v )  fo r  re la t ively severe windshears, the optimal t ra jec tor ies  a r e  

characterized by an i n i t i a l  climb, followed by nearly horizontal f l i g h t ,  

followed by renewed climbing a f t e r  the a i r c ra f t  has passed through the shear 

region ; 

( v )  weak-to-moderate windshears and re1 at ively severe w i  ndshears a re  

survivable employing an optimized f l i g h t  strategy; however, extremely severe 

windshears a r e  not survivable, even employing an optimized f l i g h t  strategy; 

( v i )  i n  re la t ively severe windshears, optimal t ra jec tor ies  have a 

much better survival capabili ty than constant angle of a t tack t ra jec tor ies  

( fo r  instance, maximum angle of attack t ra jector ies  o r  maximum 1 ift-to-drag 

r a t i o  t ra jec tor ies ) ;  i n  addition, they have a bet ter  survival capabili ty 

than constant pitch t ra jector ies .  

2.6. Advanced Guidance Schemes. T h e  computation of the optimal t ra jec tor ies  

requires global information of the wind flow f i e ld ;  t ha t  i s ,  i t  requires the 

knowledge of the wind velocity components a t  every point of the region of space 

i n  which the a i r c r a f t  i s  flying. In practice, this global information i s  not 

available; even i f  i t  were available, there would not be enough computing 

capabili ty onboard and enough time t o  process i t  adequately. As a consequence, 

one must t h i n k  o f  optimal t ra jec tor ies  as merely benchmark t ra jec tor ies  tha t  i t  

i s  desirable t o  approach i n  actual f l i g h t .  
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Since global information i s  not available, the best that  one can do is  

t o  employ local information on the wind flow f i e ld ,  i n  particular,  local 

information on the wind acceleration and the downdraft. Therefore, the 

guidance problem must be addressed i n  these terms: Assuming tha t  local information 

i s  available on the wind acceleration, the downdraft, as  well as the s t a t e  

of the a i r c r a f t ,  we w i s h  t o  guide an a i r c ra f t  automatically or  semiautomatically 

i n  such a way tha t  the key properties of the optimal t ra jec tor ies  are preserved. 

Based on the idea of preserving the properties of the optimal t ra jec tor ies ,  

four guidance schemes were developed a t  Rice University: 

( a )  

( b )  

(c)  

( d )  

The de ta i l s  of these guidance schemes a re  omitted and can be found i n  

acceleration guidance, based on the r e l a t ive  acceleration; 

absolute gama guidance, based on the absolute path inclination; 

re la t ive  gama guidance, based on the relat ive path incliantion; 

theta guidance, based on the p i t c h  a t t i t u d e  angle. 

Refs. 8-13 as well as  i n  Refs. 15-17. 

Guidance t ra jector ies  were computed f o r  the Boeing B-727 a i r c r a f t  us ing  

I t  the above guidance schemes and the HAS-AS-9000 computer of Rice University. 

was found tha t  a l l  of the above guidance schemes ( i n  particular,  the acceleratian 

guidance and the gama guidance) produce t ra jec tor ies  which -are quite close t o  

the optimum trajector ies .  

a re  superior to  the t ra jector ies  arising from al ternat ive guidance schemes 

( for  instance, constant angle of  attack t ra jec tor ies  and constant pitch t ra jec tor ies ) .  

In addition, the result ing near-optimum t ra jec tor ies  

2.7. Simp1 if ied Guidance Schemes and P i l o t i n g  Strategies. As stated 

above, the previous advanced guidance schemes require local information on the 

wind flow f ie ld  and the s t a t e  of the aircraf t .  While this information will be 

available i n  future a i r c ra f t ,  i t  m i g h t  n o t  be available on current a i r c ra f t .  
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For current a i r c ra f t ,  one way t o  survive a windshear encounter is  to  

use a constant pitch a t t i t ude  technique; t h i s  technique has been advocated by 

many experts on the windshear problem. 

is  the quick t ransi t ion to  horizontal f l i g h t ,  based on the properties o f  the 

optimal t ra jector ies .  

An a l ternat ive,  simple technique 

T h e  quick t ransi t ion t o  horizontal f l i g h t  requires an i n i t i a l  decrease 

of the angle of attack, so as  t o  decrease the path inclination to  nearly 

horizontal. Then,  nearly horizontal f l i g h t  is maintained d u r i n g  the shear 

encounter. 

For re la t ively severe windshears, the quick horizontal f l i g h t  t ransi t ion 

technique yields t ra jec tor ies  which  a r e  competitive w i t h  those of the advanced 

guidance schemes discussed previously. I n  addition, f o r  re la t ive ly  severe 

windshears, the quick horizontal f l i g h t  transit ion technique yields  t ra jec tor ies  

which  have better survival capabi l i t ies  than those associated w i t h  other guidance 

techniques, such as constant angle o f  attack o r  constant pitch. 

Uork on the quick  horizontal f l igh t  t ransi t ion technique is  nearly 

completed and publication of two reports is expected short ly  (Refs. 18-19). 
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Workshop on Control Applications of  Nonlinear Programming and Optimization, 

3.14. 

London, England, 1986. 
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Publications i n  Progress 

MIELE, A., e t  a l ,  Optimization and Acceleration Guidance of F l i g h t  

Trajectories in a Windshear, Journal of Guidance, Control, and Dynamics 

( t o  appear). 

MIELE,  A., e t  a l ,  Downdraft Effects on Optimization and Guidance of 

Take-Off Trajectories i n  a Windshear, Journal of Optimization Theory 

and Applications ( t o  appear). 

MIELE, A., e t  a l ,  guasi-Steady Flight to  Quasi-Steady F l i g h t  Transition 

i n  a Windshear: Trajectory Guidance, Paper No. AIAA-87-0271, AIAA 

25th Aerospace Sciences Meeti ng , Reno, Nevada, 1987 ( to  appear). 

MIELE, A., e t  a l ,  Near-Optimal Piloting Strategies fo r  F l i g h t  i n  Severe 

Wi ndshear ( t o  appear). 

MIELE, A., e t  a l ,  Simple P i l o t i n g  Strategies f o r  F l i g h t  i n  Severe 

Windshear: Q u i c k  Transition t o  Horizontal Flight ( to  appear). 

3.15. 

3.16. 

3.17. 

3.18. 

3.19. 
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4. Abstracts of Pub1 ications 

4.1. MIELE, A.,  WANG, T., and MELVIN, W. W., Optimal F l i g h t  Trajectories i n  

the Presence of Windshear, Part 1 , Equations of Motion, Rice University, 

Aero-Astronautics Report No. 191, 1985. 

Abstract. This report is  the f i r s t  of ser ies  dealing w i t h  the determination 

of optimal f l i gh t  t ra jec tor ies  i n  the presence of windshear. 

characterized by sharp change i n  intensity and direction over a re la t ive ly  small 

region of space. T h i s  problem is important i n  the take-off and landing of 

both c iv i l ian  airplanes and mili tary airplanes and i s  key to  a i r c r a f t  safety. 

T h i s  is a wind 

I t  i s  assumed that:  the a i r c r a f t  i s  a par t ic le  of constant mass; f l i g h t  

takes place i n  a vertical  plane; Newton's law is valid i n  an Earth-fixed system; 

and the wind flow f ie ld  is steady. 

Under the above assumptions, the equations of motion under windshear 

conditions a r e  derived employing three different coordinate systems: the 

Earth-fixed system; the re la t ive  wind-axes system; and the absolute wind-axes 

system. Transformations a re  supp l i ed  which allow one t o  pass from one system 

to another. 

4.2. MIELE, A., WANG, T., and MELVIN, W. W.,  Optimal F l i g h t  Trajectories i n  

the Presence of Nindshear, Part 2, Problem Formulation, Take-Off, Rice 

University, Aero-Astronautics Report No. 192, 1985. 

Abstract. This report i s  the second of a se r ies  dealing w i t h  the 

determination of optimal f l i g h t  t ra jector ies  i n  the presence of windshear. 

employ the equations of motion written for the re la t ive  wind-axes system. We 

supply an analytical description of the forces acting on the a i r c r a f t ,  as  well 

as a description of the wind flow f i e ld .  

we formulate eight fundamental optimization problems [Problems ( P l  ) - ( P 8 ) 1  

We 

T h e n ,  w i t h  reference to  take-off, 

under the assumptionsthat the power sett ing i s  held a t  the maximum value and 
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tha t  the airplane is  controlled through the angle of attack. 

Problems (Pl)-(P3) a re  least-square problems of the Bolza type. Problems 

( P 4 ) - ( P 8 )  a r e  minimax problems of the Chebyshev type, which can be converted 

into Bolza problems th rough  suitable transformations. Hence, ( P l ) - ( P 8 )  can 

be  solved employing the family of sequential gradient-restoration algorithms 

(SGRA), developed for  optimal control problems of the Bolza type. 

4.3 .  MIELE, A., WANG, T., and MELVIN, W. W.,  Optimal F l i g h t  Trajectories i n  

the Presence of Windshear, Part 3, Algorithms, Rice University, Aero- 

Astronautics Report No. 193, 1985. 

Abstract. T h i s  report i s  the t h i r d  of a ser ies  dealing w i t h  the 

determination of optimal f l i g h t  t ra jector ies  i n  the presence of windshear. 

consider the following general problem o f  the Bolza type [Problem ( P ) ] :  Minimize 

a functional w i t h  respect t o  the s t a t e  vector x ( t ) ,  the control vector u ( t ) ,  

and the parameter vector IT which  sa t i s fy  a system of d i f fe ren t ia l  constraints,  

i n i t i a l  constraints,  and f inal  constraints. 

We 

We present the algorithms useful f o r  solving Problem ( P )  on a d ig i ta l  

computer, more specif ical ly ,  sequential gradient-restoration algorithms (SGRA) . 
Both the primal formulation and the dual formulation a r e  presented. Depending 

on whether the primal formulation i s  used or  the dual formulation is  used, one 

obtains a primal sequential gradient-restoration algorithm (PSGRA) o r  a dual 

sequential gradient-restoration algorithm ( DSGRA) . 
t The  system of Lagrange multipliers associated w i t h  the gradient phase 

of SGRA and the restoration phase of SGRA i s  examined. 

i s  shown tha t  the Lagrange multipliers are endowed w i t h  a duali ty property: 

they minimize a special functional, quadratic i n  the mu1 t i p l i e r s ,  subject to  

the mu1 tip1 i e r  different ia l  equations a n d  boundary conditions, f o r  given s t a t e ,  

control, and parameter. 

For each phase, i t  

These duality properties have considerable computational 
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impl icat ions:  they a l low one t o  reduce the a u x i l i a r y  optimal cont ro l  problems 

associated w i t h  the gradient phase and the res to ra t i on  phase o f  SGRA t o  

mathematical programming problems involv ing a f i n i t e  number o f  parameters as 

unknowns. 

4.4. MIELE, A., WANG, T., and MELVIN, W. W., Optimal F l i g h t  T ra jec to r ies  i n  

the Presence o f  Windshear, P a r t  4, Numerical Results, Take-Off, Rice 

Universi ty,  Aero-Astronautics Report No. 194, 1985. 

Abstract. This repo r t  i s  the four th  o f  a ser ies deal ing w i t h  

the determination o f  optimal f l i g h t  t r a j e c t o r i e s  i n  the presence o f  windshear. 

We obta in  numerical r e s u l t s  f o r  the take-of f  problem, employing the dual 

sequential gradient - restorat ion algor i thm (DSGRA) , We inves t i ga te  a l a r g e  

number o f  combinations o f  performance indexes, boundary condit ions, windshear 

models, and windshear i n tens i t i es ,  

the angle o f  a t tack o r  on both the angle o f  a t tack  and i t s  t ime der ivat ive.  

The f o l  lowing conclusions are reached: (i ) optimal t r a j e c t o r i e s  a re  

considerably super ior  t o  constant angle o f  a t t a c k  t ra jec to r ies ;  (ii) optimal 

t r a j e c t o r i e s  achieve minimum v e l o c i t y  a t  about the time when the windshear 

ends; ( i i i )  optimal t r a j e c t o r i e s  can be found which t rans fe r  an a i r c r a f t  from a 

quasi-steady condi t ion t o  a quasi-steady condi t ion through a windshear; ( i v )  

among the optimal t r a j e c t o r i e s  investigated, those minimaximizing Illy1 are 

of p a r t i c u l a r  i n te res t ,  because the a1 t i t u d e  d i s t r i b u t i o n  e x h i b i t s  a monotonic 

behavior; t h i s  i s  t rue  f o r  a moderate windshear and a r e l a t i v e l y  severe windshear; 

(v)  an extremely severe windshear cannot be survived, even employing an optimized 

f l i g h t  strategy; and ( v i )  the sequential gradient - restorat ion a lgor i thm has 

proven t o  be a powerful a lgor i thm f o r  solving the problem of the optimal f l i g h t  

t r a j e c t o r i e s  i n  a windshear. 

I nequa l i t y  const ra in ts  a r e  imposed on on ly  
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4.5. MIELE, A.,  Summary Report on NASA Grant No. NAG-1-516, Optimal Flight 

Trajectories i n  the Presence of Windshear, 1985-86, Rice University, 

Aero-Astronautics Report No. 195, 1985. 

Abstract. This report summarizes the research performed a t  Rice University 

dur ing  the period 1984-85 under NASA Grant No. NAG-1-516 on optimal f l i g h t  

t ra jec tor ies  i n  the presence of windshear. 

of motion, problem formulation (take-off), algorithms, and numerical resu l t s  

(take-off). 

4.6. MIELE, A., WANG, T., and MELVIN, W. W., Optimal Take-Off Trajectories i n  

The topics covered include: equations 

the Presence o f  Windshear, Paper No. AIAA-85-1843-CP, AIAA Atmospheric 

Flight Mechanics Conference, Snowmass, Colorado, 1985. 

Abstract. T h i s  paper i s  concerned w i t h  optimal f l i g h t  t ra jec tor ies  i n  

the presence of windshear. With particular reference t o  take-off, eight fundamental 

optimization problems [Problems (Pl )-( PS)] a re  formulated under  the assumptions 

that  the power setting i s  he ld  a t  the maximum value and tha t  the airplane is  

control led through the angle of attack. 

Problems (P1 ) - (  P3) a re  1 east-square probl ems of the Bo1 za type. Problems 

(P4)-(P8) a re  minimax problems o f  the Chebyshev type, which can be converted 

into Bolza problems through sui table  transformations. 

solved employing the dual sequential gradient-restoration algori  thrn (DSGRA) fo r  

optimal control problems. 

Numerical resu l t s  a r e  obtained for a large number of combinations of 

These problems a r e  

performance indexes, boundary conditions, windshear models, and windshear 

intensi t ies .  However, for  the sake of brevity, the presentation of this paper 

i s  rest r ic ted to  Problem (P6), minimax ] A h [ ,  and Problem (P7), minimax lAyl. 

Inequality constraints are  imposed on t h e  angle of attack and  the time derivative 

o f  the angle o f  a t t a c k .  
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The  following conclusions a re  reached: ( i )  optimal t ra jec tor ies  a re  

considerably superior t o  constant angle of at tack t ra jec tor ies ;  ( i i )  optimal 

t ra jec tor ies  achieve min imum velocity a t  about the time when the windshear ends; 

( i i i )  optimal t ra jector ies  can be found which t ransfer  an a i r c r a f t  from a 

quasi-steady condition t o  a quasi-steady condition through a windshear; ( i v )  

among the optimal t ra jec tor ies  investigated, those minimaximizing IAyl a re  of 

par t icular  in te res t ,  because the a1 t i tude dis t r ibut ion exhibits a monotonic 

behavior; this i s  true for  a moderate windshear and a re la t ively severe windshear; 

( v )  an extremely severe windshear cannot be survived, even employing an optimized 

f l i g h t  strategy; and ( v i )  the sequential gradient-restoration algorithm (SGRA) 

has proven t o  be a powerful algorithm for  solving the problem of the optimal 

f l i g h t  t ra jec tor ies  i n  a windshear. 

4.7. MIELE, A., WANG, T., and MELVIN, W. W.,  Optimal Take-Off Trajectories 

i n  the Presence of Windshear, Journal of Optimization Theory and 

Applications, Vol. 49, flo. 1 ,  pp. 1-45, 7986. 

Abstract. T h i s  paper is  concerned w i t h  optimal f l i g h t  t ra jec tor ies  i n  the 

presence of windshear. 

optimization problems [Problems ( P l  ) - (P8) ]  a r e  formulated under the assumptions 

tha t  the power set t ing is  held a t  the maximum value and tha t  the airplane i s  

controlled th rough  the angle of attack. 

U i t h  par t icular  reference to take-off, eight fundamental 

Problems (Pl)-(P3) are least-square problems o f  the Bolza type. Problems 

( P 4 ) - ( P 8 )  a r e  minimax problem of the Chebyshev type, which can be converted 

into Bo1 za probl ems through sui tab1 e transformations. 

solved employing the dual sequential gradient-restoration algorithm (DSGRA) fo r  

optimal control problems. 

Numerical resul ts  are  obtained for a large number of combinations of 

I 

These probl ems a re  

performance indexes, boundary conditions, windshear models, and windshear 
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intensi t ies .  

i s  res t r ic ted t o  Problem ( P G ) ,  minimax l A h l ,  and Problem ( P 7 ) ,  minimax lAyl. 

Inequality constraints a re  imposed on the angle of attack and the time derivative 

of the angle o f  attack. 

Howevcr, for the sake o f  brevity, the presentation of this paper 

The following conclusions are reached: ( i )  optimal t ra jector ies  a re  

considerably superior t o  constant-angl e-of-attack t ra jector ies ;  ( i  i ) optimal 

t ra jector ies  achieve m i n i m u m  velocity a t  about the time when the windshear ends; 

( i i i )  optimal t ra jector ies  can be found which t ransfer  an a i r c r a f t  from a 

quasi-steady condition t o  a quasi-steady condition through a windshear; ( i v )  

as  the boundary conditions are  relaxed, a higher f inal  a l t i t ude  can be achieved, 

a lbe i t  a t  the expense of  a considerable velocity loss; ( v )  among the optimal 

t ra jector ies  investigated, those solving Problem (P7)  a r e  t o  be preferred, 

because the a l t i tude  distribution exhibits a monotonic behavior; i n  addition, 

for  boundary conditions BC2 and BC3, the  peak angle of a t tack i s  below the 

maximum permissible value; ( v i )  moderate windshears and relat ively severe 

windshears a re  survivable employing an optimized f l i g h t  strategy; however, 

extremely severe windshears are not survivable, even employing an optimized 

f l i g h t  strategy; and ( v i i )  the sequential gradient-restoration algorithm (SGRA) , 
employed i n  i t s  dual form (DSGRA) ,  has proven t o  be a powerful algorithm fo r  

so lv ing  

4.8. 

optimum 

the problem of the optimal f l i g h t  t ra jec tor ies  i n  a windshear. 

MIELE, A., WANG, T., and MELVIN, W. W., Guidance Strategies f o r  Near- 

Opt imum Performance i n  a Windshear, Part 1 ,  Take-Off, Basic Strategies,  

Rice University, Aero-Astronautics Report No. 201, 1986. 

Abstract. T h i s  paper i s  concerned w i t h  guidance s t ra tegies  for  near- 

performance i n  a windshear. The take-off problem i s  considered w i t h  

reference t o  f l i gh t  i n  a vertical plane. 
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F i r s t ,  t ra jec tor ies  fo r  optimum performance i n  a windshear a re  determined 

for  d i f fe ren t  windshear models and different windshear in tens i t ies .  Use is 

made of the methods of optimal control theory i n  conjunction w i t h  the dual 

sequential gradient-restoration algorithm (DSGRA) f o r  optimal control problems. 

In this  approach, global information on the wind flow f i e ld  i s  needed. 

Then,  guidance s t ra tegies  for  near-optimum performance i n  a windshear 

a re  developed, s ta r t ing  from the optimal t ra jec tor ies .  

guidance schemes a re  presented: ( A )  gamma guidance, based on the re la t ive  

path inclination; (B)  theta guidance, based on the pitch a t t i t ude  angle; and 

( C )  acceleration guidance, based on the relat ive acceleration. 

local information on the wind flow f i e ld  i s  needed. 

Specifically,  three 

In t h i s  approach, 

Numerical experiments show tha t  guidance schemes ( A ) ,  (E),  ( C )  produce 

t ra jec tor ies  which a re  quite close t o  the  optimum t ra jec tor ies .  

the near-optimum t ra jec tor ies  a re  considerably superior t o  the t ra jec tor ies  

arising from al ternat ive guidance schemes. 

In addition, 

An important character is t ic  o f  guidance schemes ( A ) ,  ( B ) ,  ( C )  i s  the i r  

simplicity. 

instrumentation and/or modification o f  avai 1 ab1 e instrumentation. 

4.9. 

Indeed, these guidance schemes a re  implementable using available 

MIELE, A., WANG, T., and MELVIN, W. W., Guidance Strategies fo r  Near- 

Optimum Performance i n  a Windshear, Par t  2,  Take-Off, Comparison Strategies,  

Rice University, Aero-Astronautics Report No. 202, 1986. 

Abstract. In the previous paper, t ra jec tor ies  fo r  optimum performance 

i n  a windshear were determined f o r  different windshear models and d i f fe ren t  

windshear intensi t ies .  Then, guidance s t ra tegies  fo r  near-optimum performance 

i n  a windshear were developed, s ta r t ing  from the optimal t ra jec tor ies .  

three guidance schemes were presented: ( A )  gamma guidance, based on the re la t ive  

Specifically,  
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path inclination; ( B )  theta guidance, based on the pitch a t t i tude  angle; and 

( C )  acceleration guidance, based on the reldtive acceleration. 

I n  this report, several comparison s t ra teg ies  a re  investigated for the 

sake of completeness, more specifically:  (D) constant alpha guidance; ( E )  constant 

velocity guidance; (F) constant theta guidance; ( G )  constant re la t ive  path 

inclination guidance; (H) constant absolute path inclination guidance; and 

( I )  l inear  a1 t i t ude  distribution guidance. 

Numerical experiments show tha t  guidance schemes (D)  through ( I )  a re  

infer ior  t o  guidance schemes ( A )  through ( C )  for  a variety of technical reasons. 

In particular,  for  the case where the wind velocity difference is AWx = 120 f t  sec-’ 

and the windshear intensi ty  is AWx/Ax = 0.030 sec-l, i t  is  shown tha t  the 

t ra jec tor ies  associated w i t h  guidance schemes ( D )  through ( I )  h i t  the ground, 

while the t ra jec tor ies  associated w i t h  guidance schemes (A) through ( C )  c lear  

the ground. 

4.10. MIELE, A., WANG, T., and MELVIN, W. W., Guidance Strategies fo r  Near- 

Optimum Take-Off Performance i n  a Windshear, Paper Ho. AIAA-86-0181, 

AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, 1986. 

Abstract. T h i s  paper i s  concerned w i t h  guidance s t ra teg ies  fo r  near- 

The take-off problem is considered w i t h  opt imum performance i n  a windshear. 

reference to  f l i g h t  i n  a vertical plane. 

First, t ra jector ies  for  optimum performance i n  a windshear are 

determined for different  windshear models and difference windshear intensi t ies .  

Use i s  made of the methods of optimal control theory i n  conjunction w i t h  the 

dual sequential gradient-restoration algorithm (DSGRA) f o r  optimal control 

problems. I n  th is  approach, global information on the w i n d  flow f i e l d  is  needed. 
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Then,  guidance s t ra tegies  for  near-optimum performance i n  a windshear 

a r e  developed, s ta r t ing  from the optimal t ra jector ies .  Specifically,  three 

guidance schemes are  presented: ( A )  gama guidance, based on the re la t ive  

path inclination; ( B )  theta guidance, based on the pitch a t t i t ude  angle; and 

( C )  acceleration guidance, based on the re la t ive  acceleration. 

local information on the wind flow field i s  needed. 

In this approach, 

Numerical experiments show that  guidance schemes ( A ) ,  (B), ( C )  produce 

t ra jec tor ies  which a re  quite close to  the optimum trajector ies .  In addition, 

the near-optimum t ra jec tor ies  a r e  considerably superior to  the t ra jec tor ies  

a r i s ing  from a1 ternative guidance schemes. 

An important character is t ic  of guidance schemes ( A ) ,  (B), ( C )  is their 

simp1 ic i ty .  

instrumentation and/or modification of available instrumentation. 

4.11. MIELE, A., WANG, T., and MELVIN, W. W., Guidance Strategies fo r  Near- 

Indeed, these guidance schemes a r e  implementable us ing  available 

Opt imum Take-Off Performance i n  a Windshear, Journal of Optimization 

Theory and Applications, Vol. 50, No. 1,  pp. 1-47, 1986. 

Abstract. T h i s  paper is  concerned w i t h  guidance s t ra teg ies  fo r  near- 

The take-off problem is considered w i t h  optimum performance i n  a windshear. 

reference to  f l i g h t  i n  a vertical  plane. 

First, t ra jec tor ies  for  optimum Performance i n  a windshear a r e  

determined for  different  windshear models and different  windshear in tens i t ies .  

Use i s  made of the methods of optimal control theory i n  conjunction w i t h  the 

dual sequential gradient-restoration algorithm (DSGRA) fo r  optimal control 

problems. I n  this approach, global information on the wind flow f ie ld  is  needed. 

Then, guidance s t ra tegies  for near-optimum performance i n  a windshear 

a re  developed, s ta r t ing  from the optimal t ra jec tor ies .  Specifically,  three 



guidance schemes are presented: ( A )  gamma guidance, based on the re la t ive  

path inclination; (B) theta guidance, based on the pitch a t t i tude  angle; and 

( C )  acceleration guidance, based on the relat ive acceleration. 

approach, local information on the wind flow f i e ld  i s  needed. 

In t h i s  

Next, several a l ternat ive schemes a re  investigated for  the sake of 

completeness, more specifically:  ( D )  constant alpha guidance; ( E )  constant 

velocity guidance; ( F )  constant theta guidance; ( G )  constant re la t ive  path 

inclination guidance; ( H )  constant absolute path inclination guidance; and 

( I )  l inear  a1 t i tude d i s t r i b u t i o n  guidance. 

Numerical experiments show tha t  guidance schemes ( A ) - ( C )  produce 

t ra jec tor ies  which a re  qui te  close t o  the optimum t ra jec tor ies .  In addition, 

I the near-optimum t ra jec tor ies  associated w i t h  guidance schemes ( A ) - ( C )  are  

considerably superior to  the t ra jec tor ies  ar is ing from the a1 ternative guidance 

schemes (D)-(I). 

An important character’stic o f  guidance schemes ( A ) - ( C )  is the i r  

simplicity. 

i ns trumenta ti  on and/or modification o f  avai 1 a bl e i ns trumenta t ion .  

4.12. 

Indeed, these guidance schemes are  implementable us ing  available 

MIELE, A., WANG, T., and MELVIN, W. W., Optimization and Acceleration 

Guidance of Flight Trajectories in a Windshear, Paper No. AIAA-86-2036-CP, 

AIAA Guidance, Navigation, and Control Conference, Williamsburg, Virginia, 

1986. 

I 

I 

Abstract. This paper i s  concerned with guidance s t ra tegies  for  near- 

The take-off problem i s  considered w i t h  
i 

op t imum performance i n  a windshear. 

reference t o  f l i g h t  in a vertical  plane. I n  addition t o  the horizontal shear, 

the presence of a downdraft i s  assumed. 

F i rs t ,  t ra jec tor ies  f o r  optimuni performance i n  a windshear a re  determined 

f o r  different  windshear models and different  windshear in tens i t ies .  Use i s  
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made of the methods of optimal control theory i n  conjunction w i t h  the dual 

sequential gradient-restoration algorithm (DSGRA) f o r  optimal control problems. 

In this approach, global information on the wind flow f i e ld  i s  needed. 

T h e n ,  guidance s t ra tegies  for near-optimum performance i n  a windshear 

a re  developed, s tar t ing from the optimal t ra jec tor ies .  Specifically,  an 

acceleration guidance scheme, based on the re la t ive  acceleration, i s  presented 

i n  both analytical form and feedback control form. In this approach, local 

information on the wind flow field is needed. 

Numerical experiments show tha t  the acceleration guidance scheme produces 

t ra jec tor ies  which a r e  quite close to  the optimum trajector ies .  In addition, 

the near-optimum t ra jec tor ies  a r e  considerably superior t o  the t ra jec tor ies  

ar is ing from al ternat ive guidance schemes. 

An important character is t ic  o f  the acceleration guidance scheme i s  i t s  

Indeed, this guidance scheme is  implementable us ing  available simplicity. 

i ns trumenta ti on and/or modi f i ca t i  on o f  avai 1 ab1 e i ns trumen ta  ti on. 

4.13. MIELE, A., WANG, T., and MELVIN, W. W.9 Optimization and Gamma/Theta 

Guidance of Flight Trajectories i n  a Windshear, Paper No. ICAS-86-564, 

15th Congress of the International Council of the Aeronautical Sciences, 

London, England, 1986. 

Abstract. T h i s  paper i s  concerned w i t h  guidance s t ra teg ies  f o r  near- 

The take-off problem i s  considered w i t h  optimum performance i n  a windshear. 

reference t o  f l i g h t  i n  a vertical  plane. In addition to  the horizontal shear, 

the presence o f  a downdraft i s  assumed. 

First, t ra jec tor ies  fo r  optimum performance i n  a windshear a re  determined 

f o r  different  windshear models and different windshear intensities. Use i s  

made o f  the methods o f  optimal control theory i n  conjunction w i t h  the dual 
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sequential gradient-restoration a1 gori t h m  (DSGRA) fo r  optimal control problems. 

I n  this approach, global information on the wind flow f i e ld  i s  needed. 

Then,  guidance s t ra tegies  fo r  near-optimum performance i n  a windshear 

a re  developed, s tar t ing from the optimal t ra jector ies .  

guidance schemes are  presented: the absolute gamma guidance scheme, based 

on the absolute path inclination; the relative gama guidance scheme, based on 

Specifically, three 

the re la t ive  path inclination; and the theta guidance scheme, based on the 

pitch a t t i t u d e  angle. In this approach, local information on the wind flow 

field i s  needed. 

Numerical experiments show tha t  the gamma/theta guidance schemes produce 

t ra jec tor ies  which a re  quite close to  the optimum trajector ies .  

the near-optimum t ra jec tor ies  a re  considerably superior t o  the t ra jec tor ies  

In addition, 

ar is ing from a1 ternative guidance schemes. 

An important character is t ic  o f  the gamma/theta guidance schemes is  their 

simplicity. 

i nstrumentation and/or modification o f  avail able instrumentation. 

Indeed, these guidance schemes a re  implementable us ing  available 

4.14. MIELE, A., CJANG, T., and MELVIN, W. W., Quasi-Steady F l i g h t  t o  Quasi- 

Steady F l i g h t  Transition i n  a Glindshear: Trajectory Optimization, 6th 

IFAC Workshop on Control Applications of Nonlinear Programing and 

Optimization, London, England, 1986. 

Abstract. T h i s  paper i s  concerned w i t h  the optimal t ransi t ion of an 

1 a i r c r a f t  from quasi-steady f l i g h t  to  quasi-steady f l i g h t  i n  a windstiear. The take-off 

problem is  considered w i t h  reference t o  f l i gh t  i n  a vertical  plane. In addition 

to  the horizontal shear, the presence of a downdraft is considered. I t  is 

assumed tha t  the power set t ing i s  held a t  the maximum value and tha t  the 

a i r c r a f t  i s  controlled through the angle of attack. Inequal i ty  constraints 

a r e  imposed on b o t h  the angle of attack and i t s  time derivative. 
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The  optimal t ransi t ion problem i s  formulated as a minimax problem or 

Chebyshev problem of optimal control : the performance index be ing  minimized 

is  the peak value of the modulus of the difference between the absolute path 

inclination and a reference value, assumed constant. 

t h e  Chebyshev problem i s  converted into a Bolza problem. 

problem is  solved employing the dual sequential gradient-restoration algorithm 

(DSGRA) fo r  optimal control problems. 

By sui table  transformation, 

Then, the Bolza 

Numerical experiments a re  performed f o r  different windshear intensities 

and d i f fe ren t  windshear models. 

(WS1) i t  includes the horizontal shear and neglects the downdraft; (WS2) i t  

neglects the horizontal shear and includes the downdraft; (WS3) i t  includes 

both the horizontal shear and the downdraft. 

Three basic windshear models a r e  considered: 

The  numerical resu l t s  lead to the following conclusions: ( i )  not only the 

t ransi t ion from quasi-steady f l i g h t  t o  quasi-steady f l i g h t  i n  a windshear is 

possible, b u t  i t  can be performed i n  an optimal way; ( i i )  f o r  weak-to-moderate 

shear/downdraft combinations, the optimal t rans i t ion  is  characterized by a 

monotonic climb; i n  this monotonic climb, the absolute path inclination i s  

nearly constant through the shear region; this constant value decreases a s  

the shear/downdraft intensi ty  increases; ( i  i i )  fo r  severe shear/downdraft 

combinations, the optimal transit ion i s  characterized by an i n i t i a l  climb, 

followed by nearly horizontal f l i g h t  i n  the shear region, followed by 

renewed climbing i n  the after-shear region; ( i v )  the re la t ive  velocity decreases 

i n  the shear region, achieves a m i n i m u m  value a t  about the end of the shear, 

and then increases i n  the after-shear region; ( v )  i n  the after-shear region, 

the absolute p a t h  inclination increases a t  a rapid r a t e  a f t e r  the velocity 

recovery i s  almost completed; and ( v i )  the dual sequential gradient-restoration 

algorithm has proved to  be a powerful algorithm for  s o l v i n g  the problem of 

the optimal transit ion i n  a windshear. 
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